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A B S T R A C T   

Remote sensing aims to provide precise information on forest ecosystems under climate and land use changes, 
much of which is in the form of parameters estimated for biotic and abiotic variables for various official reporting 
instruments. Model-assisted estimation (MA) that harnesses remote sensing has demonstrated a surpassing ability 
to balance the tradeoff between robustness and efficiency. However, (1) MA has to unfold in a way complying 
with rather than overriding a sampling design because modification to sample size and field protocol is usually 
not allowed for an established setup, thus impeding further increases to inventory precision; and (2) it is inef
ficient to predict multiple forest attributes with many individual models, producing inconsistencies in the esti
mates due to lack of preserving the correlations, and offsetting the gains in inventory precision with the cost 
spent on modeling. Consequently, within the statistical framework of MA, this study proposes a remotely sensed 
data assimilation procedure, DAMA, to support high-precision multivariate forest inventory. Based on pop
ulations in China and Burkina Faso, promising results indicate that (1) the DAMA estimator proposed is 
approximately design-unbiased with its variance affected by the sampling design, the prediction accuracy, and 
the type of remotely sensed auxiliaries involved in DA, in descending order; (2) with simple random sampling, 
DAMA estimator increases the inferential precision on average 14% and 7% for Horvitz-Thompson and MA 
counterparts; and (3) with two-stage sampling, remarkably, 180% and 57%. Overall, DAMA demonstrates 
considerable efficiency that would better serve natural resource observation and management.   

1. Introduction 

Remote sensing aims to provide accurate information about forest 
ecosystems under climate and land use changes, much of which is in the 
form of parameters estimated for biotic and abiotic variables of biodi
versity, energy and material cycling for national, regional, and inter
national reporting instruments including National Forest Inventory 
(NFI) and United Nations Framework Convention on Climate Change 

(UNFCCC) (Tomppo et al., 2010; Vidal et al., 2016). These official in
struments require continuous inventory estimates, typically on an 
annual basis and at population or domain levels where a domain refers 
to the subset of a population, e.g., a county of a province or a produc
tivity class of a eucalyptus farm (Hou et al., 2022). This indicates that 
robustness and efficiency are the key to any inferential procedure con
fronting these demands (Eggleston et al., 2006; Williams and Brown, 
2019). 
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Remote sensing-assisted forest inventory using model-assisted esti
mation (MA) has demonstrated an extraordinary ability to balance the 
tradeoff between robustness and efficiency. MA is a category of design- 
based inference that combines features of sampling designs and model 
prediction in population parameter estimation (Särndal et al., 1992) 
where remote sensing is the key to statistical modeling and prediction 
(Baffetta et al., 2009; Gregoire et al., 2016; McRoberts et al., 2022; 
Næsset et al., 2011). For MA estimators, the approximate design- 
unbiasedness holds valid by probability sampling and a bias- 
correction term where design-consistency is affected by factors 
including design, sample size, remotely sensed auxiliary data, and 
modeling (Hou et al., 2018; Kangas et al., 2016; Mandallaz et al., 2013; 
Myllymäki et al., 2017; Ståhl et al., 2016; Stehman, 2009). A standard 
design-based estimator, e.g., Horvitz-Thompson (HT) estimator, is 
design-unbiased, and the precision of which increases as sample size 
increases. The MA counterpart of the standard estimator has the 
advantage of being able to produce a higher precision using the same 
sample, or equivalently, to achieve a similar precision with much 
smaller sample sizes (Gregoire et al., 2011; McRoberts et al., 2013). 

However, challenges persist for MA: 

▪ MA has to unfold in a way complying with rather than over
riding a sampling design.  

▪ It is inefficient to predict multiple forest attributes with many 
individual models.  

▪ Remotely sensed auxiliary data are not necessarily free. 

Modification to sample size and field protocol is usually not allowed 
for an established sampling setup, thus impeding further increases to 
inventory precision particularly for NFIs (Hou et al., 2021). Predicting 
multiple forest attributes with many individual models would produce 
inconsistencies in the estimates due to lack of preserving the correla
tions, which offsets the gains in inventory precision with the cost spent 
on modeling (McRoberts et al., 2017). Remotely sensed quality data are 
costly. Although LiDAR is increasingly considered ideal for predicting 
forest variables of interests (VOIs) (Xu et al., 2018, 2019), frequent ac
quisitions for large areas are still impractical. Ideal auxiliary data would 
be timely and effective, and preferably free of charge. Hence, alterna
tives that overcome these challenges must be sought. 

Data assimilation (DA) is a viable option for improving MA. DA is a 
broad category of mathematical procedures that improves prediction or 
estimation by adjusting the parameters of the marginal distribution of a 
random variable to the parameters of its conditional distribution given 
the jointly distributed variables observed (Fletcher, 2017; Lahoz et al., 
2010). In forest inventory, DA has drawn increasing attention for ap
plications entailing updating parameters, calibration of predictions, and 
prediction of missing values, with various procedures rooted in esti
mation theory including Kalman filter, mixed estimator, and Bayesian 
statistics (Czaplewski, 1990; Hou et al., 2021). Best linear unbiased 
predictor (BLUP) is a frequentist counterpart formula of Bayesian sta
tistics that estimates the conditional expectation for multivariate normal 
vectors (Henderson, 1975; Robinson, 1991) and is the equation from 
which the Kalman filter, the mixed estimator, and Kriging were math
ematically derived (Kalman, 1960; Robinson, 1991; Theil, 1963). With 
BLUP, Hou et al. (2019) and Xu et al. (2023) devised efficient DA pro
cedures that leverage cross-model correlation and spatial autocorrela
tion for model-based inference. 

Consequently, the objectives of this study are threefold: (1) to 
develop and demonstrate a data assimilation procedure, DAMA, that 
improves the inferential precision of MA through integrating sampling 
design, remote sensing, simultaneous prediction, and BLUP for inven
torying multiple VOIs; (2) to compare HT, MA and DAMA estimators for 
simple random and two-stage samplings; and (3) to compare the per
formance of remotely sensed auxiliary data obtained with multispectral 
satellites that are free of charge or inexpensive to MA and DAMA. A 
highlight of DAMA resides in its approximate design-unbiasedness 

because of its probabilistic nature. 

2. Materials 

2.1. Populations and samples 

Two study areas were selected from southwestern China and south
eastern Burkina Faso for evaluating the DAMA estimators proposed in 
the method section (Fig. 1). Generalizability of the evaluation would 
benefit from these disparate albeit typical populations in respective 
ecosystems. A county in China, Pingxiang, forms the first population of 
64,766 ha (22◦00′N, 106◦50′W), and the Kou region in Burkina Faso 
forms the second population of 10,712 ha (11◦45′N, 1◦57′W). Vegetation 
in the first population is subtropical monsoon rainforest with moderate 
to dense coverage, and coverage and vegetation in the second popula
tion is dry savanna. 

There are 719,624 elements in the China population, and 119,025 
elements in the Burkina Faso population. Each element encompasses 30 
by 30 m. Different sampling designs produced the sample of respective 
populations (Fig. 1). For China, according to the Chinese NFI protocol 
(NFGA, 2010), a simple random sample of 145 elements was selected 
and field measured in the second half of 2015. For Burkina Faso, a two- 
stage sample of 160 elements was chosen. Selection and field mea
surements were carried out between November 2013 and February 2014 
according to the protocol of the Land Degradation Surveillance Frame
work (Vågen et al., 2015). The VOIs for both populations were densities 
of stem volume (m3/ha) and basal area (m2/ha), two standard forest 
attributes that are often correlated. 

2.2. Remotely sensed auxiliary variables 

RapidEye satellite sensor (RE) and Landsat 8 Operational Land 
Imager (L8) data were collected for both populations and georeferenced 
to WGS84/UTM Zone 48 N and 30 N. Single scenes of respective sensors 
covered respective populations and were acquired for the field season. 
RE data with a spatial resolution of 5 m were purchased at 1.3 USD/km2 

and processed to Level-3 A with a resampled spatial resolution of 30 m. 
L8 data with a spatial resolution of 30 m were Provisional Surface 
Reflectance product freely available from the U.S. Geological Survey. 

Auxiliary variables that are candidates for modeling and DA cali
bration were calculated from the spectral bands, spectral indices 
(Table 1), the first principal component of the spectral bands (PCA), the 
textures of PCA, and textures for the respective spectral indices. Textures 
included the mean, variance, homogeneity, contrast, dissimilarity, en
tropy, angular second moment and correlation (Haralick et al., 1973). 

3. Methods 

3.1. Overview 

Sections within Methods are nested and structured in a top-down 
fashion. First, Section 3.2 introduces design-based inference, a gold 
standard for NFIs, with classical point and variance estimators that do 
not require models or remotely sensed auxiliary data, but only field 
observations regarding VOI. Point estimator uses the observed values 
and inclusion probabilities of a sample to infer the expected value of a 
VOI in a spatial population. Variance estimator quantifies the uncer
tainty in the corresponding point estimator due to the random inclusion 
of elements or sample plots into the sample. The ideal inference or in
ventory is consistent with the desired properties of an estimator, such as 
unbiasedness and small variance, at little cost. 

Second, to this end, Section 3.3 introduces MA where corresponding 
estimators from Section 3.2 are developed. These estimators are also 
design-based, but more efficient than the estimators in Section 3.2, as 
they further exploit remotely sensed auxiliary data and models to reduce 
variance. Third, Section 3.4 further introduces simultaneous modeling 
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of multiple VOIs with seemingly unrelated regressions (SUR). This is not 
only because forest inventory is multivariate in nature, and the SUR 
model system serves MA in Section 3.3, but also the constructed SUR 
model system readily provides vectors and matrices required by BLUP in 
Section 3.5. Fourth, within the framework of MA, Section 3.5 develops 
the statistical structure of BLUP, which leads to the DAMA estimators. 
Clearly, Sections 3.3 to 3.5 together build DAMA. Finally, Section 3.6 
introduces a measurement statistic for comparing the inference preci
sion of the different estimators in the previous sections. In MA and 
DAMA estimators, remote sensing plays a central role in reducing 
variance. 

3.2. Design-based inference 

Design-based inference is a category of statistical procedures with an 
objective of estimating the unknown population parameter, such as the 
mean, μ, of a VOI, using a probability sample selected from the target 
population. In forest inventory, this population is finite and can be any 
spatial area of interest that is tessellated with smaller grids of a given 
size serving as population elements. A VOI can be any forest attribute 

such as stem volume, basal area, biomass, or carbon. The probability 
sample is selected from the population by a sampling design (or design), 
and for each element in the sample, i.e., sample plot, the VOI value is to 
be observed. 

Essentially, design is the function defining a probability distribution, 
p( • ), on the set of samples that are possible to obtain. Different designs 
may lead to different estimators, but the HT estimator, alias π-estimator, 
works for any design (Särndal et al., 1992, p.43). Since a design assigns a 
positive inclusion probability, π, to each element, the π-estimator can 
estimate μ by expanding the observed VOI values by their respective πs. 
The π-estimator has a general form of 

μ̂π =
1
N
•
∑

k∈u

yk

πk
(1)  

with an unbiased estimator for its variance, Var(μ̂π), as 

V̂ar(μ̂π) =
1

N2 •
∑

k∈u

∑

l∈u

(
Δkl

πkl
•

yk

πk
•

yl

πl

)

(2)  

where N is the population size; for the k- or l-th element in the sample u, 
yk is the observed VOI value; πk =

∑

k∈u
p(u) is the inclusion probability for 

element k; πkl =
∑

k&l∈u
p(u) is the joint probability of inclusion for ele

ments k and l; Δkl = πkl − πkπl for k ∕= l, and Δkk = πk(1 − πk) for k = l. 
The π-estimator is design-unbiased, i.e., E(μ̂π) = μ, but V̂ar(μ̂π) depends 
on the specific design, sample size, and which elements happen to be 
included in the sample. 

In this study, we consider sampling designs that are common in NFI 
programs and operational forest management planning with estimators 
reduced from the π-estimator, including simple random sampling (SRS) 
and two-stage sampling (TS). Thorough descriptions about respective 
designs and mathematical derivations are available in classic sampling 
textbooks (Cochran, 1977; Gregoire and Valentine, 2007; Särndal et al., 
1992; Thompson, 2012). 

With SRS without replacement, μ can be estimated using an expan
sion estimator (Cochran, 1977). This estimator is simple to use, even 

Fig. 1. Study areas in China and Burkina Faso.  

Table 1 
Spectral indices calculated from multispectral data.  

Spectral indices Formula 

Enhanced vegetation index (EVI) 2.5(NIR − R)/(NIR + 6R − 7.5B + 1)
Generalized Difference Vegetation Index 

(GDVI) 

(
NIR2 − R2)/(NIR2 + R2)

Normalized Difference Vegetation Index 
(NDVI) 

(NIR − R)/(NIR + R)

Normalized Difference Water Index (NDWI) 

* 

(NIR − SWIR2)/(NIR + SWIR)

Specific Leaf Area Vegetation Index (SLAVI) 

* 

NIR/(R + SWIR2)

Simple Ratio (SR) NIR/R  

* Not available for RE in the absence of SWIR and SWIR2 bands. NIR, near 
infrared band; R, red band; B, blue band; SWIR, short-wave infrared band. 
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compatible with alternative designs (Magnussen et al., 2020). The 
expansion estimator takes the form 

μ̂1 =
1
n
•
∑n

k
yk (3)  

with its variance estimator as 

V̂ar(μ̂1) =
N − n

N
•

σ2

n
(4)  

where n is the sample size; and σ2 =
∑

k∈u

(
yk − μ̂1

)2
/(n − 1) is the sample 

variance. The finite-population correction factor, (N − n)/N, has effect 
on reducing V̂ar(μ̂1), but can be omitted for populations that are large 
relative to the sample size. For the China population in Section 2.1, N =

719,624 and n = 145. NFI programs in Belgium and China use this 
estimator for official reporting although the sample is (quasi) systematic 
(Tomppo et al., 2010). 

With TS, the population of N elements is partitioned into primary and 
secondary sampling units (PSUs and SSUs) with sampling required at 
both stages. Let C denote the number of PSUs in the population and Si 

the number of SSUs in the i-th PSU, so N =
∑C

i Si. A first stage sample of 
size c is drawn from PSUs, and then a second stage sample of size si is 
drawn from the i-th PSU in c, so n =

∑c
i si. When SRS without replace

ment is applied at each stage, the TS estimator takes the form (Särndal 
et al., 1992, p.142) 

μ̂2 =
1
N
•

C
c
•
∑c

i
τ̂ i (5)  

with its variance estimator as 

V̂ar(μ̂2) =
1

N2

[

C(C − c)
σ2

I

c

]

+
1

N2

[
C
c
•
∑c

i
Si(Si − si)

σ2
i

si

]

(6)  

where τ̂ i =
Si
si

∑si
k yik estimates the total y-value of the i-th PSU; σ2

I =
∑c

i (τ̂ i − τ̂ i)
2
/(c − 1) with τ̂ i =

∑c
i τ̂ i/c; and σ2

i =
∑si

k
(
yik − yi

)2
/(si − 1)

with yi =
∑si

k yik/si. σ2
I is the sample variance among PSU totals, and σ2

i is 
the sample variance within the i-th PSU. V̂ar(μ̂2) decomposes into two 
terms, indicating two sources of variation. The first term in Eq. (6) arises 
from the selection of PSUs and is the variance that would be obtained if 
all SSUs in a selected PSU were observed, while the second term arises 
from the subsampling of SSUs within selected PSUs and is the variance 
due to estimating τi. For the Burkina Faso population in Section 2.1, N =

C • S = 115 • 1035 and n = c • s = 16 • 10. While TS is common in 
operational forest management planning, it is relatively rare for NFI 
programs with Croatia one of the few exceptions (Tomppo et al., 2010). 

3.3. Model-assisted estimation 

MA is a category of design-based inference that combines design and 
model considerations in estimation. Benefiting from remotely sensed 
auxiliary variables, the (generalized) regression estimator is an impor
tant class of MA estimators, seeking approximate unbiasedness under 
the design and using a variance estimator that is robust against de
partures from the assisting model. Resembling the π-estimator principle, 
the regression estimator has a general form of 

μ̂r =
1
N
•

(
∑

k∈U

ŷk +
∑

k∈u

ek

πk

)

(7)  

where U denotes the population of elements; and ŷk is the prediction for 
element k using a model fit to sample data; and for k ∈ u, ek = yk − ŷk is 
the residual. 

Through Taylor linearization, the approximate variance of μ̂r has a 
general form of 

Var(μ̂r) =
1

N2 •
∑

k∈U

∑

l∈U

(

Δkl •
Ek

πk
•

El

πl

)

(8)  

where the error Ek results from a population fit model; Δkl and πk are 
defined in Eq. (2). Subject to different perspectives on the unobservable 
Ek, two variance estimators are available based on large sample ap
proximations. The first one uses a predicted g-weight, gk, to calibrate ek 
due to utilizing a sample fit rather than a population fit model (Särndal 
et al., 1992, Eq. 6.6.4, p.235), 

V̂ar(μ̂r)1 =
1

N2 •
∑

k∈u

∑

l∈u

(
Δkl

πkl
•

gkek

πk
•

glel

πl

)

(9) 

The second one simply replaces the unobservable Ek by the observ
able ek, leading to (Särndal et al., 1992, Eq. 6.6.11, p.237) 

V̂ar(μ̂r)2 =
1

N2 •
∑

k∈u

∑

l∈u

(
Δkl

πkl
•

ek

πk
•

el

πl

)

(10) 

Relative to V̂ar(μ̂r)1, V̂ar(μ̂r)2 is slightly less efficient without the g- 
weight calibration. However, the derivation for a g-weight predictor is 
nontrivial due to its design- and linear model-specific features. 
Regardless, the g-weight is asymptotically gk = 1 and often omitted to 
ease computation, in practice making V̂ar(μ̂r)1 collapse to V̂ar(μ̂r)2 
(Gregoire et al., 2011; Mandallaz, 2015; Särndal et al., 1992, Chapters 
6–8). 

We directly employ V̂ar(μ̂r)2, because it works for any assisting 
parametric models such as linear, nonlinear, generalized linear mixed 
model with some fixed, some random effects, and even works for semi- 
and non-parametric models (Kangas et al., 2016). This capability to 
handle such a wide array of model types greatly increases the utility of 
MA in forest inventory. Breidt and Opsomer (2017) reviewed many of 
these prediction techniques for MA. 

Consequently, the regression estimator counterpart to μ̂1 takes the 
form (Särndal et al., 1992, Eq. 6.5.3, p.231) 

μ̂r1 =
1
N
•
∑N

k
ŷk +

1
n
•
∑n

k
ek (11)  

with its variance estimator as 

V̂ar(μ̂r1) =
N − n

N
•

σ2
e

n
(12)  

where σ2
e =

∑

k∈u

(
ek −

∑n
kek/n

)2
/(n − 1) is the residual variance. 

The regression estimator counterpart to μ̂2 takes the form (Särndal 
et al., 1992, Eq. 8.9.5, p.323) 

μ̂r2 =
1
N
•
∑N

k
ŷk +

1
N
•

C
c
•
∑c

i
τ̂ei (13)  

with its variance estimator as 

V̂ar(μ̂r2) =
1

N2

[

C(C − c)
σ2

eI

c

]

+
1

N2

[
C
c
•
∑c

i
Si(Si − si)

σ2
ei

si

]

(13)  

where τ̂ei =
Si
si

∑si
k eik estimates the total residual-value of the i-th PSU; 

σ2
eI =

∑c
i (τ̂ei − τ̂ei)

2
/(c − 1) with ̂τei =

∑c
i τ̂ei/c; and σ2

ei =
∑si

k (eik − ei)
2
/

(si − 1) with ei =
∑si

k eik/si. 

3.4. Modeling at the element level with seemingly unrelated regressions 

With the regression estimators, the remote sensing-based model is 
not required to be “true” in terms of correctly depicting some process by 
which the population is generated. If the population is well-described by 
an assumed model, the regression estimator normally brings a large 
variance reduction; otherwise, the reduction may be modest, but the 
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regression estimator still is approximately unbiased (Särndal et al., 
1992, p.238). 

With multivariate forest inventory, we are interested in surveying 
multiple VOIs instead of just one. When these VOIs are correlated, the 
seemingly unrelated regressions (SUR), readily available in R-package 
“systemfit” (Henningsen and Hamann, 2022), can be used to construct a 
model system for making simultaneous predictions (Zellner, 1962). The 
SUR model system takes the form 

⎡

⎢
⎣

y1

y2

⋮

yK

⎤

⎥
⎦ =

⎡

⎢
⎣

X1 0

0 X2

… 0

⋯ 0

⋮ ⋮

0 0

⋱ ⋮

⋯ XK

⎤

⎥
⎦

⎡

⎢
⎣

β1

β2

⋮

βK

⎤

⎥
⎦+

⎡

⎢
⎣

e1

e2

⋮

eK

⎤

⎥
⎦ (15) 

i.e., y = Xβ+ e, where K is the number of submodels; yk is the vector 
of the kth VOI, k = {1,2,…,K}, y′

k = [yk1⋯ykn] with n indicating the 
number of field observations; Xk is the design matrix of remotely sensed 
variables in the form of a block diagonal matrix, βk the vector of model 
parameters, and ek the vector of errors. 

The SUR model system captures VOI dependencies through a joint 
variance-covariance matrix of the system’s errors, e, which is a multi
variate normal vector with E(e) = 0 and variance-covariance matrix, 

Var(e) =

⎡

⎢
⎣

σ11In σ12In

σ21In σ22In

… σ1KIn

⋯ σ2KIn

⋮ ⋮

σK1In σK2In

⋱ ⋮

⋯ σKKIn

⎤

⎥
⎦

= ΣK×K⨂In (16)  

where ΣK×K is a positive definite symmetric matrix comprising 
submodel-specific error variances and cross-submodel error co
variances. The β vector can be estimated using feasible generalized least 
squares by estimating each element in ΣK×K with a consistent estimator, 
σ̂ ij = 1

nê′
i êj, where ̂ei results from an initial OLS fit, and then by inserting 

Σ̂K×K into β̂ =
(
X′Σ̂

− 1
K×K⨂InX

)− 1X′Σ̂
− 1
K×K⨂Iny (Hansen, 2007). 

Assisting models were constructed separately and then combined as 
sub-models for estimating ΣK×K and β of the SUR model system. This 
system comprises six sub-models, with the first two predicting respec
tively stem volume and basal area using RapidEye independent variables 
and the last four predicting residuals (Appendix Table A1). We use RE 
for modeling VOIs because preliminary analyses indicate a slightly 
greater prediction accuracy for RE than L8 (Hou et al., 2018). Inde
pendent variables were selected parsimoniously using the “bootstrap 
stepAIC” procedure (Rizopoulos, 2022). 

3.5. Data assimilation at the element level with BLUP 

For the SUR model system, the residuals of a submodel can be 
decreased with correlated residuals of other submodels. Although the 
regression estimators do not rely on a “true” model, the smaller the re
siduals, the smaller the variance of the regression estimators. Therefore, 
we resort to a calibration procedure of DA developed from BLUP to 
achieve this purpose. This procedure was introduced in Hou et al. (2019) 
for which an example with code is readily available (Hou, 2019). 

BLUP calibrates the parameters of the marginal distribution of a 
random variable to the parameters of its conditional distribution given 
the jointly distributed variables observed. The SUR model system and its 
Σ̂K×K provide all required components for implementing BLUP. Assume 
that a random vector, y, is multivariate normal and partitioned into two 

parts, y =

[
ya
yb

]

, where ya and yb are two sub-vectors, each of which 

comprises at least one SUR sub-model y-vector of VOIs. Given that the 
first and second order properties of these sub-vectors are known, i.e. 

E
(
ya
)
= μa, E

(
yb
)
= μb, Var

(
ya
)
= Σa, Var

(
yb
)
= Σb, and Cov

(
ya, y′

b
)
=

Σab, these relationships denote 
[

ya
yb

]

∼

([
μa
μb

]

,

[
Σa Σab

Σ′
ab Σb

])

(McCulloch and Searle, 2001). 
If yb is observed, the best linear predictor (BLP) of ya is the condi

tional expectation BLP
(
ya
)
= E

(
ya|yb

)
and 

(
ya|yb

)
∼ N

(
μa + ΣabΣ− 1

b
(
yb 

− μb
)
,Σa − ΣabΣ− 1

b Σ′
ab
)
. If μa, μb and Σ =

[
Σa Σab

Σ′
ab Σb

]

are replaced by 

their estimates extracted from the SUR model system, i.e., the sub- 
models in Xβ̂ and the corresponding submatrices in Σ̂K×K as demon
strated in Hou et al. (2019, Appendix), BLUP is the resulting empirical 
predictor, 

ŷa.BLUP = μ̂a + Σ̂ab Σ̂
− 1
b (yb − μ̂b) (17)  

with 

V̂ar(ŷa.BLUP) = Σ̂a − Σ̂ab Σ̂
− 1
b Σ̂

′
ab (18) 

Note that the second terms in ̂ya.BLUP and V̂ar
(

ŷa.BLUP
)

are respectively 
the calibration term for μ̂a and Σ̂a, forming the basis of DA calibration 
for the SUR model system at the element level. Because the conditional 
expectation of ya given yb, E(ya|yb), is always the best predictor that has 
the smallest variance (Mehtätalo and Lappi, 2020, p.60; Robinson, 
1991), the calibrated residuals, ea.BLUP = ya − ŷa.BLUP, are theoretically 
smaller than the original residuals resulting from the SUR model system, 
ea = ya − ŷa, thus leading directly to DAMA estimators that are coun
terparts to Eq. (11) to Eq. (14). Because the SUR model system supports 
simultaneous predictions for multiple VOIs, DA supports simultaneous 
estimation with extended vectors and matrices. 

For implementing Eq. (17), wall-to-wall observations are required in 
the form of yb. This is conveniently achieved with remote sensing in 
three steps. First, regard residuals resulting from predicting stem volume 
or basal area as a new variable and model them with either RE or L8 
independent variables that are available wall-to-wall. Second, predict 
wall-to-wall residuals and regard these predicted residuals as the 
dependent variable of an intercept model for maintaining correlation 
with the residuals resulting from predicting the VOI. Third, combine all 
sub-models and estimate parameters for the SUR model system. 
Thereby, the last four sub-models predict respectively RE predicted re
siduals for stem volume, RE predicted residuals for basal area, L8 pre
dicted residuals for stem volume, and L8 predicted residuals for basal 
area. With these four sub-models whose observations and predictions 
are available wall-to-wall, we can calibrate the predicted values, or 
equivalently, the residuals for any one of the first two sub-models, using 
RE, L8 or both. 

3.6. Comparison of inferential precision 

With design-based inference, the smaller the coefficient of variation, 
CV%, the greater the inferential precision, or equivalently, the less the 
inferential uncertainty. CV% enables comparisons among estimators by 
quantifying the uncertainty on a percentage basis, taking the form 

CV% = 100×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V̂ar(μ̂)
√

μ̂ (19) 

The CV%, officially used by NFI programs such as in China and the 
USA, can further be used to approximate 67% and 95% confidence in
tervals under a normality assumption for the sampling distribution of 
estimates (Bechtold and Patterson, 2005). 
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4. Results and discussion 

4.1. Comparing prediction and data assimilation at the element level 

Flexibility is a feature of the constructed SUR model system because 
it supports both individual and simultaneous prediction for VOIs. Both 
the original prediction (i.e., SUR model prediction) and the calibrated 
prediction (i.e., SUR model prediction calibrated using BLUP) are 
summarized in Table 2. Other seemingly trivial but useful details are 
reported in the Appendix, including the SUR models constructed for the 
populations in China and Burkina Faso (Table A1), empirical densities 
and correlations for the residual errors (Fig. A1 and A2), and the wall-to- 
wall observations produced for sub-models 3–6 using RE or L8 
(Table A2). 

Table 2 compares the original and calibrated prediction accuracy 
evaluated with root mean square error (RMSE). Three findings are 
noteworthy. First, DA increased the prediction accuracy on average 
9.5% from the original, regardless of population or VOI, complying with 
the theory that the conditional expectation is always the best predictor 
that has the smallest variance, also indicating the validity of the pro
posed DA as supported by Hao et al. (2022) using other populations and 
VOIs. Second, while the joint use of RE and L8 brings the largest increase 
to prediction accuracy, L8 alone ensured an increase in prediction ac
curacy, free of charge, thus markedly increasing the utility of incorpo
rating this DA procedure for thematic mapping. This favorable effect 
stems from the spectral band complementarity of RE and L8, which 
provides additional information that can be used to better predict re
siduals. Third, the key to DA is Σ̂K×K, i.e., the correlation between re
siduals for VOIs. While variables explaining the remaining residual 
variability are probably common albeit unfound, DA circumvents this 
difficulty by using the unexplained variability in the form of residual 
covariances to increase the prediction accuracy, using the whole set of 
RE and L8 (sub-models 3–6) or the subset of RE (sub-models 3–4) or L8 
(sub-models 5–6). 

4.2. Comparing estimators at the population level 

Table 3 summarizes estimates for the HT, MA and DAMA estimators. 
There are four major findings. First, DAMA estimators were the most 
efficient in the respective designs, suggesting similar performances ex
pected for other designs beyond SRS and TS. With SRS, DAMA estimator 
increased the inferential precision on average 14% and 7% compared to 
the HT and MA counterparts; and with TS, remarkably, 180% and 57%. 

Second, differences among point estimates were negligible, suggesting 
approximate unbiasedness holds valid for these design-based estimators. 
Third, although model predictions and calibrated predictions were only 
intermediate products enroute to inferences for population parameters, 
the inferential precision of MA and DAMA increased as the prediction 
accuracy increases. Fourth, it is the design that decides the route of re
sidual propagation in MA. The routes for MA and DAMA to reducing 
V̂ar(μ̂) are through decreasing residual variances in Eq. (12) and Eq. 
(14), with the reduction rate faster for TS than SRS. 

4.3. Effects of two-stage design 

Model-assisted estimation relies on design, and it is well noted that 
for SRS the inferential precision increases as the sample size increases, so 
our primary focus is TS. The effects of stage partitioning were evaluated 
for respective TS estimators, with resulting estimates summarized in 
Table 4. In general, estimates were only negligibly different for point 
estimators, but substantially greater for variance estimators, indicating 
that these effects manifested themselves by affecting the precision rather 
than the approximate unbiasedness of design-based inference. 

There are three relevant findings. First, the partition into PSU and 
SSU affected the inferential precision, particularly for HT estimator, but 
not as much for MA and DAMA, indicating an improved consistency of 
model-assisted estimation. Second, DAMA enhanced TS cost-efficiency 
because of deflation to the two variance components stemming from 
the tradeoff between PSU and SSU sizes. The size here refers to the 
number of selectable PSUs or SSUs, not the areal extent. The larger the 
PSU size, the smaller the SSU size, and thus the greater the between- 
PSUs heterogeneity that inflates the first variance term, and mean
while the greater the within-PSU homogeneity that deflates the second 
variance term (Table 4). For reducing inventory cost, PSU partitions are 
large in practice, typically on the order of dozens to hundreds for a 
population. Although such partition is not necessarily VOI-specific or 
optimal, DAMA appears efficient in a way that the uncertainty ascribed 
to the tradeoff becomes marginal, paving a cost-effective path for TS 
towards inventorying multiple VOIs. Third, design flexibility at respec
tive stages further improved the inferential precision for TS. Although 
SRS was examined at each stage, TS supports more efficient designs at 
each stage to deflate the first and second variance terms for DAMA. 
Generalized from TS, multistage sampling (Mandallaz, 2015) cohering 
with the hierarchy of a large population such as globe, region, country, 
province, state, and county could be a viable framework harmonizing 
international reporting instruments. 

TS is a converted stratified sampling that circumvents classification. 
As the PSU size decreases, the first variance term in Eq. (6) diminishes 
for TS, and the second variance term equals the variance of stratified 
sampling (Särndal et al., 1992, p.137, Remark 4.3.2). A main difference 
between stratified sampling and TS resides in the classification or par
titioning being contextual or not. Contextual classification uses classi
fiers developed with pattern recognition algorithms for strata generation 
(Swain et al., 1981; Phiri and Morgenroth, 2017). Misclassification or a 
wrong contextual variable used in classification deflates the inferential 
precision. Even with an ideal classification and contextual variable, 
strata are still VOI-specific with resulting challenges interpreted as 

Table 2 
Comparison for the original and DA calibrated prediction accuracy.  

Pop. Model Dependent 
variable 

Prediction RMSE RMSE 
% 

China 

Submodel- 
1 

Stem volume 
(m3/ha) 

Original 63.60 60.99 
DA with RE & 
L8 56.95 54.62 

DA with RE 61.58 59.05 
DA with L8 58.11 55.73 

Submodel- 
2 

Basal area 
(m2/ha) 

Original 7.77 48.46 
DA with RE & 
L8 

6.96 43.42 

DA with RE 7.47 46.59 
DA with L8 7.14 44.54 

Burkina 
Faso 

Submodel- 
1 

Stem volume 
(m3/ha) 

Original 9.04 53.29 
DA with RE & 
L8 

7.96 46.94 

DA with RE 8.32 49.02 
DA with L8 8.26 48.67 

Submodel- 
2 

Basal area 
(m2/ha) 

Original 2.6 48.69 
DA with RE & 
L8 2.16 40.31 

DA with RE 2.31 43.23 
DA with L8 2.26 42.34  

Table 3 
Comparing the HT, MA and DAMA estimators for SRS and TS.  

VOI Group SRS (China) TS (Burkina Faso) 

μ̂ V̂ar(μ̂) CV% μ̂ V̂ar(μ̂) CV% 

Stem volume 
(m3/ha) 

HT 104.28 34.21 5.61 16.96 4.02 11.82 
MA 101.39 28.09 5.23 17.05 0.95 5.72 
DAMA 98.09 22.53 4.84 16.99 0.27 3.06 

Basal area 
(m2/ha) 

HT 16.03 0.51 4.45 5.35 0.43 12.26 
MA 15.53 0.42 4.17 5.41 0.11 6.13 
DAMA 15.07 0.34 3.85 5.41 0.03 3.20  
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reduced cost-efficiency. However, TS does not necessarily partition a 
population as per a contextual variable but in a flexible way that cir
cumvents the detrimental effects associated with classification. The 
DAMA estimator would in such scenario help to improve the inferential 
precision. 

4.4. Effects of remotely sensed data assimilation 

Unbiasedness is a desired property of an estimator or inventory 
procedure, crucial to the credibility of any reporting instruments 
(Eggleston et al., 2006). While Hou et al. (2019) devised a model- 
unbiased DA procedure for model-based inference, DAMA is devised 
for model-assisted estimation. The approximate design-unbiasedness of 
DAMA is rooted in the unbiasedness of BLUP (Robinson, 1991), and the 
approximate design-unbiasedness of MA (Särndal et al., 1992). As per 
Table 5, remotely sensed auxiliary variables associated with DA do not 
affect the approximate unbiasedness of DAMA, regardless of pop
ulations, designs or VOIs. 

As for the inferential precision, there are four findings. First, the 
greater the DA prediction accuracy, the greater the DAMA inferential 
precision (Tables 2 and 5). This is because a variance estimator is con
structed on residuals for the model-assisted estimation. Second, the 
inferential precision was decided by the number of remotely sensed 
auxiliary variables in the form of sub-models 3–6 involved with DA. 
While the more the better, L8 ensured a minimum increase in precision, 
free of charge. Third, design affected the efficiency of DAMA more than 
the number of remotely sensed auxiliaries involved with DA. Fourth, 
DAMA is compatible with MA in a way that a sub-model can be used 
independently in MA or jointly in DAMA, extending the flexibility for ad- 
and post-hoc DAMA utilities. 

DAMA is compatible with established and alternative designs. The 
convenience of DAMA resides in its compatibility with NFI programs by 
not imposing any modifications to sampling and field protocols, paving a 
path towards building a common reporting instrument by preserving 
comparability for estimates over years and among populations (Tomppo 
et al., 2010). DAMA also supports alternative designs including network 
sampling that is efficient for elusive populations or domains (Hou et al., 
2022; Thompson, 2012; Xu et al., 2021). 

In terms of versatility, DAMA is expected to be more efficient when 
used with more effective remotely sensed alternatives such as airborne 
laser scanning (ALS). However, there are pros and cons to the coverage 
of auxiliary data and existing MA theory. First, with wall-to-wall 
coverage, ALS submodels would outperform RE or L8 counterparts, 
improving prediction accuracy at the element level and thus improving 
DAMA precision. Although further validation is needed, this conjecture 
is supported by extensive studies conducted over the past few decades in 
which there are relatively high correlations between ALS auxiliary 
variables and various forest attributes of interest (e.g., Maltamo et al., 
2014). However, at present, due to the tradeoff between ALS coverage 
and cost, DAMA combined with ALS is more practical in most countries 
for small-scale inventories than for large-scale NFIs. Second, another 
option is to make a theoretical breakthrough in MA to derive new esti
mators with native support for non-wall-to-wall auxiliary data. This 
need guides our ongoing research aimed at relaxing the spatial scale 
constraints. 

In forestry inventory, alternative DA procedures have been devel
oped using BLUP to reduce variance. BLUP requires a covariance matrix 
and associated observations to update or calibrate. According to the 
origin of covariance, DA can be divided into three types: temporal, 
spatial, and cross-model DAs. First, temporal DA exploits serial corre
lation, including Kalman Filter and mixed estimator, and is often used to 
update annual estimates at the population or domain level (Ehlers et al., 
2013; Hou et al., 2021). Second, spatial DA utilizes semivariograms, 
including Kriging and BLUP-calibrated spatial regression. The change of 
support from a population to a domain is convenient in spatial statistics, 
and calibrated parameters can be estimated by the block Kriging prin
ciple (Schabenberger and Gotway, 2005; Xu et al., 2023). Third, cross- 
model DA exploits residual covariance between models, as in DAMA 
for model-assisted estimation and Hou et al. (2019) for model-based 
inference. The higher the cross-model correlation through the re
siduals, the more effective the DA. This type of DA is attractive for forest 
inventories not only because of its ability to calibrate estimates using 
correlated residuals, but also because of its ability to simultaneously 
predict or estimate multiple VOIs in a population or domain. Finally, 
with the exception of DAMA, which is design-based and approximately 
design-unbiased, these DA procedures are model-based and model- 
unbiased. Mohamedou et al. (2022) reviewed recent DA development 
in forest inventory. 

5. Conclusions 

This study proposed and demonstrated a new procedure, DAMA, that 
conjugates remotely sensed data assimilation and model-assisted esti
mation to support high-precision multivariate forest inventory. Three 
conclusions are relevant. First, the DAMA estimator proposed is 
approximately design-unbiased with its variance affected by the sam
pling design, the prediction accuracy, and the type of remotely sensed 

Table 4 
Effects of stage partitioning on TS estimators with variance decomposition.  

VOI Two-stage Partition Estimation Variance Decomposition 

PSU SSU Group μ̂ V̂ar(μ̂) CV% Term 1 Term 2 

Stem volume 
(m3/ha) 

115 1035 
HT 16.96 4.02 11.82 3.9263 0.0904 
MA 17.05 0.95 5.72 0.8841 0.0635 
DAMA 16.99 0.27 3.06 0.2166 0.0571 

25 4761 
HT 16.96 2.06 8.46 1.6419 0.4189 
MA 17.05 0.66 4.76 0.3697 0.2941 
DAMA 16.99 0.36 3.53 0.0906 0.2645 

Basal area 
(m2/ha) 

115 1035 
HT 5.35 0.43 12.26 0.4234 0.0064 
MA 5.41 0.11 6.13 0.1013 0.0048 
DAMA 5.41 0.03 3.20 0.0281 0.0040 

25 4761 
HT 5.35 0.21 8.57 0.1771 0.0297 
MA 5.41 0.06 4.53 0.0424 0.0223 
DAMA 5.41 0.03 3.20 0.0118 0.0184  

Table 5 
Effects of remotely sensed auxiliaries on DAMA.  

VOI Group SRS (China) TS (Burkina Faso) 

μ̂ V̂ar(μ̂) CV% μ̂ V̂ar(μ̂) CV% 

Stem volume 
(m3/ha) 

RE&L8 98.09 22.53 4.84 16.99 0.27 3.06 
RE 99.99 26.33 5.13 16.65 0.39 3.75 
L8 98.78 23.45 4.90 17.37 0.47 3.95 

Basal area 
(m2/ha) 

RE&L8 15.07 0.34 3.85 5.41 0.03 3.20 
RE 15.32 0.39 4.06 5.28 0.04 3.79 
L8 15.18 0.35 3.92 5.52 0.05 4.05  
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auxiliary data involved in DA, in descending order. Second, the DAMA 
estimator is the most efficient in respective designs compared to HT and 
MA estimators. With SRS, the DAMA estimator increased the inferential 
precision on average 14% and 7% compared to HT and MA counterparts; 
and with TS, remarkably, 180% and 57%. Third, the partition into PSUs 
and SSUs affects the inferential precision for TS, particularly for HT 
estimator, but not as much for MA and DAMA, indicating an improved 
consistency of model-assisted estimation. Overall, DAMA demonstrates 
considerable efficiency that would better serve natural resource moni
toring and management, particularly when used with remotely sensed 
auxiliaries that are free of charge such as Landsat 8 and Sentinel. 
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Appendix A  

Table A1 
Constructed SUR model systems.  

Pop. SUR model Dep. variable Ind. variable Estimate Std. Error RMSE% 

China 

Submodel-1 vol/ha (Intercept) 1489.48 446.13 60.99   
RE.Band3 − 7.05 1.76    
RE.NDVI 9993.95 3593.50    
RE.GDVI − 5478.50 2074.22    
RE.SR − 587.32 191.09  

Submodel-2 ba/ha (Intercept) 163.41 37.04 48.46   
RE.Band3 − 0.94 0.23    
RE.NDVI 1037.16 381.98    
RE.GDVI − 559.07 200.59    
RE.SR − 62.38 22.24  

Submodel-3 RE predicted residuals for vol/ha (Intercept) 0.12 1.24  
Submodel-4 RE predicted residuals for ba/ha (Intercept) 0.04 0.15  
Submodel-5 L8 predicted residuals for vol/ha (Intercept) 0.28 2.13  
Submodel-6 L8 predicted residuals for ba/ha (Intercept) − 0.08 0.23  

Burkina Faso 

Submodel-1 vol/ha (Intercept) 23.15 8.65 53.29   
RE.Band1 − 0.25 0.02    
RE.NDVI.variance 0.26 0.06    
RE.SR.variance − 0.57 0.14  

Submodel-2 ba/ha (Intercept) 5.4 0.21 48.69   
RE.PCA 1.24 0.1  

Submodel-3 RE predicted residuals for vol/ha (Intercept) -2.16E-14 0.26  
Submodel-4 RE predicted residuals for ba/ha (Intercept) -4.09E-15 0.08  
Submodel-5 L8 predicted residuals for vol/ha (Intercept) − 3.97E-14 0.29  
Submodel-6 L8 predicted residuals for ba/ha (Intercept) − 4.09E-15 0.08    
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Fig. A1. Empirical density (diagonal) and correlation (off-diagonal) for the residuals of the constructed SUR model system for the population in China.   
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Fig. A2. Empirical density (diagonal) and correlation (off-diagonal) for the residuals of the constructed SUR model system for the population in Burkina Faso. 
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Table A2 
Wall-to-wall observations produced for sub-models 3–6 using RE or L8.  

Population Sensor Dependent variable Independent variable Estimate Std. Error R2 

China 

RE 

Residuals for vol/ha SR.entropy − 156.41 59.06 0.06 
(w.r.t. submodel-3) SR.2ndmoment − 486.53 175.35   

EVI.entropy 157.97 60.07   
EVI.2ndmoment 481.97 168.69  

Residuals for ba/ha SR.entropy − 156.41 59.06 0.06 
(w.r.t. submodel-4) SR.2ndmoment − 486.53 175.35   

EVI.entropy 157.97 60.07   
EVI.2ndmoment 481.97 168.69  

L8 

Residuals for vol/ha PCA.variance − 2.10 0.48 0.16 
(w.r.t. submodel-5) NDVI.dissimilarity − 115.65 38.13   

GDVI.mean 289.99 60.63   
GDVI.dissimilarity 87.21 34.50   
NDWI.contrast 17.22 7.55  

Residuals for ba/ha PCA.variance − 0.20 0.05 0.13 
(w.r.t. submodel-6) NDWI 59.85 13.45   

NDWI.contrast 3.60 1.33   
SLAVI.contrast − 1.15 0.44  

Burkina Faso 

RE 

Residuals for vol/ha (Intercept) 11.68 5.63 0.13 
(w.r.t. submodel-3) PCA.mean 20.45 7.33   

PCA.correlation − 23.04 6.81   
GDVI.correlation 23.25 7.84   
NDVI.entropy − 6.38 1.97  

Residuals for ba/ha (Intercept) − 8.39 2.21 0.16 
(w.r.t. submodel-4) Band5 0.04 0.01   

PCA.mean 15.83 2.98   
SR.entropy − 1.86 0.43  

L8 

Residuals for vol/ha (Intercept) − 46.49 9.74 0.17 
(w.r.t. submodel-5) Band7 0.011 0.003   

SLAVI.mean 148.54 27.86   
SLAVI.variance − 0.15 0.03  

Residuals for ba/ha (Intercept) − 16.69 2.85 0.23 
(w.r.t. submodel-6) Band7 0.004 0.001   

NDWI.variance 0.02 0.01   
SLAVI.variance − 0.05 0.01   
SR.mean 30.95 7.16   
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