
Article https://doi.org/10.1038/s41467-024-52376-5

Haplotype-based pangenomes reveal genetic
variations and climate adaptations in moso
bamboo populations

Yinguang Hou 1,2, Junwei Gan 1,2, Zeyu Fan 1,2, Lei Sun 1,2, Vanika Garg3,
Yu Wang 1,2, Shanying Li 1,2, Pengfei Bao 1,2, Bingchen Cao 1,2,
Rajeev K. Varshney 3 & Hansheng Zhao 1,2

Moso bamboo (Phyllostachys edulis), an ecologically and economically
important forest species in East Asia, plays vital roles in carbon sequestration
and climate change mitigation. However, intensifying climate change threa-
tens moso bamboo survival. Here we generate high-quality haplotype-based
pangenome assemblies for 16 representative moso bamboo accessions and
integrated these assemblies with 427 previously resequenced accessions.
Characterization of the haplotype-based pangenome reveals extensive genetic
variation, predominantly between haplotypes rather than within accessions.
Many genes with allele-specific expression patterns are implicated in climate
responses. Integrating spatiotemporal climate data reveals more than 1050
variations associated with pivotal climate factors, including temperature and
precipitation. Climate-associated variations enable the prediction of increased
genetic risk across the northern and western regions of China under future
emissions scenarios, underscoring the threats posed by rising temperatures.
Our integrated haplotype-based pangenome elucidates moso bamboo’s local
climate adaptation mechanisms and provides critical genomic resources for
addressing intensifying climate pressures on this essential bamboo. More
broadly, this study demonstrates the power of long-read sequencing in dis-
secting adaptive traits in climate-sensitive species, advancing evolutionary
knowledge to support conservation.

Moso bamboo (Phyllostachys edulis) is an ecologically and economic-
ally vital forest species that is distributed extensively across East Asia
and plays crucial roles in carbon sequestration and climate change
mitigation1. The Chinese bamboo market, valued at $41.58 billion in
2020, is projected to surpass $138.63 billion by 20352,3, underscoring
the increasing economic significance of the bamboo industry world-
wide and its potential impact on the global market. With its rapid
growth and high carbon storage capacity, one hectare of moso

bamboo forest can store twice as much carbon as Chinese fir forests
over a 60-year period4. However, intensified climate change seriously
threatens plant biodiversity and survival, which will hinder the
reduction of greenhouse gases via carbon sinks and affect the Paris
Agreement5–7. For habitat-bound species such as moso bamboo, the
continuous accumulation of genetic variation is crucial for the gen-
eration of adaptable individuals who can respond to climate change8,9.
A previous study indicated that moso bamboo populations have
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undergone two bottleneck events, resulting in a low genetic diversity
of 0.02710. This lack of diversity, coupled with the inherent climate
sensitivity of moso bamboo11,12, highlights the risk to its survival in the
face of intensified climate change. Therefore, a quantitative assess-
ment of the climate risks and adaptation capacity of moso bamboo
would benefit protection policies and breeding efforts; however, such
studies remain scarce.

In recent years, substantial progress has been made in evaluating
plant population vulnerability to climate change through genomic
approaches13. Several studies on forest tree species havedemonstrated
the efficacious identification of climate-adaptive variations and the
ability to predict climate responses by integrating single-nucleotide
polymorphism (SNP) and environmental data to detect their inherent
associations14,15. Genomic offset represents the disruption of current
genotype–climate relationships due to rapid shifts in climate16,17. The
advantage of genomic offset approaches lies in their ability to predict
population responses and vulnerability to climate change from geno-
mic data, serving as an alternative to common garden experiments18,19.
Forward and reverse genomic offsets can also predict population
maladaptation under migration scenarios13. However, SNPs may not
fully capture climate-associated genomic information since other
types of genetic variations, such as insertions and deletions (InDels)
and structural variations (SVs) are usually ignored14. Furthermore,
systematic and accurate detection of SVs and allele-specific expression
(ASE) is challenging due to limitations in sequence resolution,
although they play important roles in speciation and adaptive evolu-
tion inplants20. These limitations in detecting genetic variations hinder
the identificationof loci associatedwith climate adaptation. Therefore,
haplotype genome sequencing enables higher-resolution localization
of genetic variations, expediting the dissection of these complex
genomic traits and improving the understanding of genetic diversity,
genotype–phenotype associations, and environmental adaptation in
tree populations21.

Recent studies have also shown the power of pangenome analysis
for comprehensively elucidating genetic diversity by integrating de
novo genome assemblies of multiple accessions22. However, pangen-
ome analysis still relies on short-read sequencing, which has limited
power in systematically capturing SVs compared to long-read
sequencing technologies. Although pangenome analysis is becoming
increasingly accessible, investigations into long-read haplotypes and
SVs remain scarce for nonmodel species23, such as moso bamboo.
Therefore, constructing high-quality haplotype-based pangenomes
using long-read sequencing will enable more comprehensive identifi-
cation of genetic variations associated with adaptation in moso
bamboo.

In this study, we construct a haplotype-based pangenome for
moso bamboo using PacBio HiFi and Hi-C sequencing strategies to
elucidate the genetic basis underlying the wide distribution and cli-
mate adaptation of this species. By integrating comprehensive geno-
mic datasets from 16 representativemosobamboo accessions (RMAs),
we characterize genome-wide genetic variations and ASE at high
resolution. Furthermore, by leveraging a graph-based pangenome and
high-resolution spatiotemporal climate data, we identify genetic loci
associated with local climate adaptation and quantify climate mala-
daptation risk across moso bamboo populations in China. Our
research addresses the following key questions: 1) What is the extent
and pattern of the haplotype-level genomic diversity of moso bam-
boo? 2) How does ASE contribute to the adaptive resilience of moso
bamboo? 3) Which genomic variations underlie local climate adapta-
tion in moso bamboo populations? 4) How will projected climate
change scenarios impact the climate maladaptation risks of moso
bamboo populations? Addressing these questions provides critical
insights to inform evidence-based conservation and breeding strate-
gies for safeguarding this ecologically and economically vital species in
the face of rapid global climate change.

Results
Genome sequencing and variation identification of 16 repre-
sentative moso bamboo accessions
We selected 16 representative moso bamboo accessions (RMAs)
according to their geographical distribution across China to capture
extensive genetic diversity (Supplementary Fig. 1). The genomes of all
the RMAs were de novo sequenced, generating 1.03 Tb of PacBio HiFi
reads, resulting in an average sequencing depth of 33.74× per RMA
(Supplementary Table 1). These data allowed the construction of 16
high-quality assemblies (32 haplotype assemblies) with an average
contig N50 length of 57.0Mb (Table 1 and Supplementary Fig. 2). The
average quality value (QV)of the final assemblywas 64.26, with a k-mer
completeness of 98.20% (Supplementary Fig. 3). We observed an
average switch error of 5.44% for all assemblies (Table 1 and Supple-
mentary Table 2). Additionally, we employed Hi-C sequencing to
facilitate chromosome-level genomeassembly for threeRMAs (CY,HB,
and HZP), yielding an average sequencing depth of 139.24× (Supple-
mentary Table 3). Hi-C interactions were utilized to anchor, order,
orient, and correct contig misjoins, enabling 99.07% of the sequences
to be anchored to pseudochromosomes across haplotype assemblies
(Table 1).

To identify high-quality protein-coding gene models, we
sequenced the transcriptomes of 3 or 4 tissues from each RMA, gen-
erating 1.34 Tb of RNA-seq data from 186 samples (Supplementary
Data 1). Using a combinatorial approach (see Methods), we predicted
an average of 54,343 protein-coding gene models in all 32 haplotype
assemblies (Table 1), with an average of 97.9% of them assigned
putative functions (SupplementaryData 2). Among these genemodels,
an average of 92,506 genes were present as biallelic genes (corre-
sponding to 46,253 allele pairs in each RMA), while 8090 genes, on
average, were present as single alleles in the haplotype assemblies
(Supplementary Table 4). The genome assemblies and annotations
were subjected to extensive quality evaluations, including assessments
of continuity, base accuracy, structural accuracy, and correlation
analyses, which revealed high-quality haplotype assemblies and gene
models suitable for downstream analyses (Supplementary Data 3 and
Supplementary Fig. 4). We also identified intact long terminal repeats
(LTRs) across the 16 assemblies and clustered the LTR families (Sup-
plementary Figs. 5–6).

For the comprehensive characterization of the genetic variations
across the 16 RMAs, we selected CYhap1 as the reference genome due
to its superior quality compared to the other accessions, and suc-
cessfully resolved its haplotypes. Thus, we identified 2123,198 SNPs
and 294,108 InDels (Fig. 1a), collectively referred to as short variations
in this study. We found that over half (65.9%) of the short variations
were present in all 16 accessions or only one accession (Supplementary
Fig. 7). Additionally, we detected 26,987 SVs, including 12,417 inser-
tions (INSs), 14,494 deletions (DELs), and 76 inversions (INVs), using
five SV callers based on two strategies (Fig. 1a, Supplementary Data 4
and Supplementary Fig. 8). Similarly, 63.8% of the SVs were shared by
all 16 accessions or only one accession (Supplementary Fig. 7). Sub-
sequently, we utilized these SVs to construct a graph-based pangen-
ome. Furthermore, we identified SVs intersecting with LTRs, and the
formation of these SVs might be associated with the presence of LTRs
(Supplementary Data 5).

Most of the genetic variation in moso bamboo occurred
between haplotypes rather than within accessions
By comparing the genetic differences of each RMA with the variations
between the haplotypes of the reference genome, we found that, on
average, 97.0% of the heterozygous variations were also present
between the haplotypes of the reference genome. Thus, these varia-
tions were classified as being present between the haplotypes of each
accession (termed “inter-haplotype” in this study), rather than
between the accessions (referred to as “inter-accession”). The numbers
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of inter-haplotype short variations and SVs were on average 10.4 times
and 5.3 times greater, respectively, than those of inter-accession short
variations and SVs (Fig. 1b and Supplementary Table 5). The average
levels of heterozygosity of total short variations and inter-accession
short variations were 98.6% and 71.2%, respectively (Supplementary
Data 6), suggesting that traditional methods of variant identification
overestimate heterozygosity in moso bamboo. On average, we iden-
tified one short variation per 923.9 bp and one inter-accession short
variation per 23,105.9 bp (Supplementary Table 6), suggesting that the
actual genetic diversity in moso bamboo was lower than that pre-
viously reported10.

Among all the RMAs, for short variations and SVs, 68.5%and68.8%
of the inter-haplotype variations were highly frequent (detected in all
the accessions), whereas only 0.1% and 0.5%, respectively, were less
frequent (detected in only one accession). In contrast, most inter-
accession variations (46.3% of short variations and 49.7% of SVs) were
present at low frequencies, whereas only 0.2% and 0.9%, respectively,
had high frequencies (Fig. 1c). Furthermore, we compared the three
well-phased genomic haplotypes and calculated the number of SNPs,
revealing that the differences among the same haplotypes from dif-
ferent accessions were relatively small, while the variations between
different haplotypes were larger (Supplementary Table 7). Therefore,
the results revealed that the accessions harbored largely similar inter-
haplotype variations, substantially exceeding the inter-accession var-
iations. The standard deviation revealed that inter-haplotype varia-
tions also represented more clustered genomic distributions than did
inter-accession variations (Supplementary Table 8 and Supplementary
Fig. 9). We also observed a strong positive correlation (Pearson’s
r =0.79) between genome-wide distributions of short variations and
SVs for inter-haplotype variations compared with inter-accession var-
iations, which showed a weak positive correlation (Pearson’s r = 0.28)
(Fig. 1d). With respect to the length of the SVs, those lengths less than
100 kbhadmore inter-haplotype SVs,while 95%of the SVswith lengths
greater than 100 kb were inter-accession SVs (Supplementary Fig. 10).

Construction and characterization of a haplotype-based pan-
genome for moso bamboo via allele comparison
To better characterize haplotypes and comparatively analyze alleles,
we aligned and identified alleles based on protein sequence similarity
and intergenic distance (see Methods). Thus, a haplotype-based pan-
genome for moso bamboo was constructed by identifying and com-
paring alleles across RMAs. In total, 1738,962 genes were grouped into
74,758 gene sets from the 32 haplotype assemblies. Gene sets were
categorized by their presence across accessions as core (present in all
16 accessions), softcore (present in 12–15 accessions), dispensable
(present in 2–11 accessions), or private (present in only one accession)
gene sets. The proportions of these four categories were 53.90%,
16.94%, 28.06%, and 1.10%, respectively (Fig. 2b). Additionally, the gene
sets were divided into three groups based on allele composition:
double-allele gene sets (the allele pair was detected in all accessions),
single-allele gene sets (only one allele of each allele pair was detected
in all accessions), and variable-allele gene sets (the allele pair was
detected in some accessions). A schematic diagram illustrating the
classification is provided in Supplementary Fig. 11. Among the 12
groups resulting from the combination of gene frequency and allele
composition categories, core gene sets accounted for the greatest
proportion (92.1%) of the double-allele gene sets,while they accounted
for the lowest proportion (0.3%) of the single-allele gene sets (Fig. 2c).

Characterization of the 12 gene set groups revealed differences in
gene structure, expression pattern, and functional features. The gene
length, cDNA length, codingDNA sequence (CDS) number, andCDS size
in the core gene sets were greater than those in the private gene sets
within the same haplotype category, and those in the double-allele gene
sets were greater than those in the single-allele gene sets (Wilcoxon
signed-rank test, P-value <0.001) (Fig. 2d, Supplementary Figs. 12–14Ta
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and Supplementary Table 9). The average gene expression level (tran-
scripts per kilobase million, [TPM]) gradually decreased from the core
to the private gene sets and decreased from the double-allele to single-
allele gene sets, except for the private gene sets (Fig. 2d and Supple-
mentary Table 10). The tissue specificity index (Tau) was significantly
lower in the core gene sets than in the private gene sets (Wilcoxon
signed-rank test, P-value <0.001), and the Tau in the single-allele gene
sets was greater than that in the double-allele gene sets, except for the
private gene sets (Wilcoxon signed-rank test, P-value <0.05) (Fig. 2e and
Supplementary Table 11). These results showed that more genes were

expressed and that their expression levels were greater in the core gene
sets, whereas those in the private gene sets exhibited greater tissue
specificity. A similar pattern was observed in the double-allele and
single-allele gene sets. Additionally, we focused on the core-single gene
set, which represents genes present in all the accessions but only in one
haplotype assembly. Among the 47 core-single gene sets with known
functions and a TPMgreater than 1 in at least one RNA-seq accession, 27
gene sets whose functions were related to environmental adaptation
were identified (Supplementary Data 7). The functions of these gene
sets include stress tolerance (e.g., the gene set GS0035370, encoding
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aldo-keto reductase 1 (AKR1))24, disease resistance (e.g., the gene set
GS0058418, encoding disease resistance protein RPM1)25, and DNA
damage repair (e.g., the gene set GS0062031, encoding dynamics of the
(6-4) photolyase)26. These results suggested that some haplotype-
specific genes may be involved in the environmental adaptation of
moso bamboo.

Involvement of allele-specific gene expression in the environ-
mental adaptation of moso bamboo
Allele-specific expression (ASE) analysis revealed 16,317 genes exhi-
biting ASE across the 16 pairs of haplotype assemblies (Supplementary
Data 8). These genes were distributed across 8730 gene sets in the
pangenome, with the largest proportion (34.1%) belonging to the core-
variable gene set and the fewest (0.3%) belonging to the dispensable-
double gene set (Fig. 3a). Additionally, thedistributionof allele-specific
expression gene sets (ASEGs) revealed a high degree of accession
specificity, with 81.8% (7139) of ASEGs detected in only 1–2 accessions
and only 9 ASEGs shared among all accessions (Fig. 3b). Interestingly,
ASEGs from a common gene set also exhibited variable allele-specific

expression patterns among tissues. For instance, of the 3149 ASEGs
detected in two or more accessions across different haplotype
assemblies, 72% exhibited tissue-specific expression patterns that
varied between accessions, while the remaining 28% demonstrated
consistent tissue expression across accessions (Supplemen-
tary Data 9).

ASE tissue-specific analyses revealed that the highest proportion
of ASEGs (39.3%) were expressed in all tissues, followed by ASEGs
expressed exclusively in leaves (13.4%), roots (6.1%), stems (5.1%), and
rhizomes (4.9%) (Fig. 3c). Functional enrichment analysis of these
ASEGs revealed associations with various stimuli and defense
responses (Fig. 3d). ASEGs expressed in all tissues were primarily
enriched for processes related to protein biosynthesis and mod-
ification, whereas those with tissue-specific expression were involved
in developmental processes, such as wax biosynthetic processes in
leaves and cell wall biogenesis in stems (Fig. 3d). These results indi-
cated that moso bamboo ASEGs likely play key roles in environ-
mental adaptation while also contributing to tissue-specific
developmental processes.
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Subsequent analysis revealed 5156 consistent ASEGs (exhibiting
consistent expression patterns toward one allele across tissues)
derived from 3183 gene sets (Supplementary Data 10). For example,
the gene set GS0010347 showed consistent ASEGs across all the
accessions in the stems and rhizomes, representing a ubiquitous ASEG
among the haplotype assemblies (Fig. 3e). The CDS of GS0010347
overlapped with a 6398-bp inter-haplotype DEL (Fig. 3f), potentially
resulting in ASE. This gene set encodes flavin-containing mono-
oxygenase 1 (FMO1), which has been experimentally shown to parti-
cipate in establishing systemic acquired resistance27. These results
suggest that certain inter-haplotype variations could be associated
with consistent ASE events. In addition, we identified 68 inconsistent
ASEGs (exhibiting high expression switching between alleles in dif-
ferent tissues) derived from 47 gene sets (Supplementary Data 11). For
instance, the gene set GS0027844 exhibited leaf ASE in 5 accessions
(AJ, CY, RH, XA, and XN) with high expression in haplotype 1 but
showed the opposite pattern in the rhizome, with high expression in
haplotype 2 (Fig. 3g). The ASE was potentially induced by a 6-bp DEL
and substitutions in the CDS (Fig. 3h). This gene set encodes an NAD-
dependent epimerase/dehydratase domain-containing protein.

Identification of genomic variations associated with bioclimatic
variables
To identify loci potentially linked to climate adaptation, we performed
genotype–environment association (GEA) analysis based on SVs
identified from the graph-based pangenome and small variations
detected in 427 previously generated resequenced moso bamboo
accessions10. We applied both latent factor mixed models 2 (LFMM2)
and redundancy analysis (RDA) to identify climate-associated genetic
variations using 19 bioclimatic (BIO) variables from WorldClim,
including 11 temperature-related variables (BIO1–BIO11) and 8
precipitation-related variables (BIO12–BIO19) (Supplementary
Data 12). We first confirmed the population structure through SNPs
using ADMIXTURE and found that K = 1; these results are consistent
with those of previous studies10 (Supplementary Fig. 15). LFMM2
initially detected 96,638 SNPs, 7456 InDels, and 449 SVs that were
significantly associated with bioclimatic variables (FDR-adjusted
P-value < 0.05) (Supplementary Data 13–14). Based on variable corre-
lation and gradient forest (GF) ranking (see Methods) (Supplementary
Figs. 16–17), six bioclimatic variables were selected for RDA to further
filter variations. These variables included annual mean temperature
(BIO1), mean diurnal range (BIO2), max temperature of warmest
month (BIO5), mean temperature of wettest quarter (BIO8), pre-
cipitation of driest month (BIO14), and precipitation seasonality
(BIO15). After retaining the variations identified by both the LFMM2
and RDA methods (Supplementary Fig. 18 and Supplementary
Data 14–15), we identified 1050 adaptive variations (958 SNPs, 90
InDels, and 2 SVs) associated with bioclimatic variables (Supplemen-
tary Data 16), representing the core genomic variations underlying
climate adaptation in moso bamboo. Additionally, compared with 123
variations related to precipitation, 996 variations were associated with
temperature. RDA revealed that the contribution of climate effects
explained 35% of the genetic variation in the adaptive variations, which
was substantially greater than that of geography (Supplementary
Table 12).

To validate climate associations and examine the potential
adaptive roles of these variations, we focused on several top candi-
dates related to temperature and precipitation. For example, we
identified a SNP associated with BIO5 on chromosome 19, the most
significant of which was chr19_24871064_SNP (LFMM2 FDR-adjusted
P-value = 0.019) (Supplementary Fig. 19). The homozygous form
exhibited higher BIO5 values (Fig. 4b). In higher-BIO5 regions (e.g., XN,
LY), the G allele frequency was greater, while lower-BIO5 regions (e.g.,
XA, HZP) showed a lower G allele frequency (Fig. 4c), with a correlation
of 0.62 (Supplementary Fig. 20). This variation is located in the intron

of CY_hic_hap1_01Gene018743 (Fig. 4a), and some other associated
SNPs are located downstream of this gene, which encodes a heat
stress-related CCHC-type zinc finger protein28. We also detected an SV
(chr18_28562210_SV) on chromosome 18 associatedwith BIO5 (LFMM2
FDR-adjustedP-value < 0.001). Accessions possessing this SVexhibited
higher BIO5 values (Supplementary Fig. 21). The gene closest to this SV
is CY_hic_hap1_01Gene010919, encoding the abscisic acid receptor
PYL8, which plays important roles in the regulation of stress
responses29.

For precipitation-related BIO14, we identified an associated var-
iation on chromosome 13 (Supplementary Fig. 22). The most sig-
nificantly associated variation was chr13_64739621_SNP (LFMM2 FDR-
adjusted P-value < 0.001). The accessions carrying this variation had
lower BIO14 values (Fig. 4e). In the two low-BIO14 regions of HZP and
CS, the G allele frequency was greater (Fig. 4f), with a strong positive
correlation (Pearson’s r =0.81) (Supplementary Fig. 23). These varia-
tions are downstream of CY_hic_hap1_01Gene048977 (Fig. 4d), which is
adjacent to a gene encoding a drought stress-related receptor-like
protein kinase (RLK)30.

Predicting vulnerable moso bamboo populations
Using identified climate-associated variations and future climate pro-
jections, we calculated the risk of non-adaptedness (RONA), which
represents the expected allele frequency offsets needed for moso
bamboo to adapt to future conditions. Four general circulationmodels
(GCMs) were considered: the AustralianCommunity Climate and Earth
System Simulator Coupled Model version 2 (ACCESS-CM2)31, the sec-
ond generation CMCC Earth System Model (CMCC-ESM2)32, the God-
dard Institute for Space Studies Model E version 2.1 coupled with the
GISS Ocean (GISS-E2-1-G)33, and the Model for Interdisciplinary
Research on Climate version 6 (MIROC6)34, which participate in the
World Climate Research Programme Coupled Model Intercomparison
Project Phase 6 (WCRP CMIP6) under two shared socioeconomic
pathways (SSPs). The two SSPs included a low greenhouse gas emis-
sions scenario (SSP126) and a high greenhouse gas emissions scenario
(SSP585). The results revealed higher RONA values under the SSP585
high-emissions scenario than under the SSP126 low-emissions sce-
nario. For all temperature-related variables, the RONA values were
greater than those of the precipitation-related variables, and the dif-
ferences between SSP585 and SSP126 were greater (Fig. 5a). For tem-
perature, the overall trend indicated an increase in the future;
therefore, we focused specifically onBIO5.Under BIO5projections, the
highest RONA occurred in XN, likely due to its current exposure to the
highest temperatures and the greatest projected warming in this
region (Fig. 5b). Regions LY, YF, and AJ also showed relatively high
RONA values for BIO5, suggesting that protection measures against
extreme heat events may be needed for these populations.

Additionally, GF modeling incorporating all bioclimatic variables
predicted local genomic offset across regions representing vulner-
ability under climate change. The greatest risks were projected in the
northwestern regions (Fig. 5c, d). In addition to the local genomic
offset, we also calculated the forward and reverse genomic offsets
(Fig. 5e, f and Supplementary Figs. 24, 25). Figures 5e, f show a com-
binative visualization of three genomic offsets (local offset, forward
offset, and reverse offset) by mapping them as red, green, and blue
bands, respectively, in an RGB color space. Brighter cells (closer to
white) and darker cells (closer to black) presented relatively greater
and lower values along each axis, respectively. Most accessions from
the northern regions appear brighter (Fig. 5e, f), indicating that they
had relatively high offset values, suggesting that even with migration,
they still face greater vulnerability compared to the southern regions.
However, both the forward and reverse offsets were lower than the
local offset (lower panels in Fig. 5e, f) in most of the northern region,
suggesting that assisted migration may to some extent enable adap-
tation to future climate change. Consistent with the RONA results, all
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the genomic offsets were greater under the SSP585 scenario than
under the SSP126 scenario, and the regions with high genomic offsets
(brighter areas) were also larger, suggesting that the more extreme
climate change associated with fossil fuel development (SSP585) may
expose moso bamboo populations to greater adaptive challenges and
potential risks than under the more sustainable scenario (SSP126).
Moso bamboo plants in major natural distribution regions are still in a
relatively safe position under the SSP126 scenario. However, under the

SSP585 scenario, some major natural growth regions, especially the
two westernmost natural growth regions, will face risks (Fig. 5f).

Discussion
The introduction and application of haplotype-resolved genomes,
graph-based pangenomes, and genus-level pangenomes have greatly
enriched our understanding of the genomic diversity of species or
taxa, providing powerful tools for revealing the genetic basis of
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important traits23,35,36. In this context, our study on moso bamboo
(Phyllostachys edulis), an economically and ecologically vital non-
timber resource, has made significant progress by employing third-
generation PacBioHiFi andHi-C sequencing technologies to obtain the
haplotype genomes of 16 representativemoso bamboo accessions and
construct a comprehensive pangenome. These genomic resources not
only more comprehensively capture the heterogeneity of the moso

bamboo genome but also provide valuable genetic information for a
deeper understanding of moso bamboo adaptability to diverse envir-
onmental conditions. However, despite the significant advantages of
haplotype genomes and pangenomes over traditional collapsed gen-
omes, there are still challenges in their practical application. Main-
stream omics analysis workflows, such as transcriptomics and
epigenomics, still predominantly rely on aligning sequencing data to
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linear reference genomes, failing to fully utilize the rich diversity
information contained within haplotype genomes and pangenomes.
Therefore, while continuously improving the accuracy and complete-
ness of genomic data, it is imperative to enhance the analytical fra-
mework and application environment of these high-quality genomic
resources, thereby ensuring their optimal utilization.

To fully utilize these genomic resources, we integrated the hap-
lotype genome and the pangenome, revealing valuable insights into
the genomic architecture of moso bamboo. Our study revealed that
the differences between the two moso bamboo haplotypes exceeded
the differences between the two moso bamboo accessions. Given the
asexual reproduction of moso bamboo over extended periods and its
67-yearflowering cycle37,38, the primary source of variation is likely rare
somatic mutations occurring within one haplotype. Asexual repro-
duction makes it difficult for variations accumulated in accessions to
be transmitted, as the absence of meiosis prevents the exchange of
geneticmaterial between homologous chromosomes (Supplementary
Fig. 26). We hypothesized that there would have been a difference
between the twohaplotypes in the common ancestor ofmosobamboo
populations in different regions and that the accumulation of somatic
mutations in moso bamboo from different regions did not exceed the
original difference between the two ancestral haplotypes. These fac-
tors have led to the phenomenon where, quantitatively, inter-
haplotype variations exceed the genetic variations among different
accessions. Additionally, we discovered that heterozygosity might be
overestimated in traditional variation detection methods. When con-
sidering the haplotype genome, we found that universally hetero-
zygous sites are also heterozygous in the reference genome and
should not be regarded as variation sites between accessions. Filtering
out these variations between haplotypes leads to a decrease in the
detected heterozygosity, while also suggesting that genetic diversity is
lower than originally estimated.

Owing to its low genetic diversity, in-depth studies on the
adaptability of moso bamboo to diverse environmental conditions are
important. We observed that the core-single gene sets and allele-
specific expression (ASE) phenomena were closely related to envir-
onmental adaptability and identified two sets of climate-related het-
erozygous variation sites, which may imply that haplotypes play a
significant role in the environmental adaptation of moso bamboo. Our
study also showed that under the high-emissions scenario SSP585, the
moso bamboo population faces significant adaptive risks (Fig. 5),
highlighting the importance of emission reduction measures for alle-
viating the pressureof climate change. Particularly in the northwestern
region,we recommendprioritizinghabitat restorationwhere the risk is
most severe (Fig. 5c) and considering assisted migration for the
northern population (Fig. 5e–f) while addressing potential competi-
tion risks. Notably, our samples contained onlymoso bamboo from all
the major natural distribution regions of moso bamboo in China, and
some of the human-transplanted populations or extreme populations
were not included in the study. Supplementing these populations, and
even global moso bamboo accessions, could enable the identification
of more variations adapted to extreme environments. For risk pre-
dictions such as RONA and local offsets that do not involve migration,

the absence of these samples is less impactful. However, for forward
and reverse offset analyses, incorporating additional populations
could uncover regions more conducive to moso bamboo cultivation
and identify moso bamboo populations better suited for migration to
extreme regions. Nevertheless, the application of genomic offset in
conservation planning is still in its infancy, and empirical validation of
its predictions is necessary to assess its practical utility18,19. This can be
achieved through carefully designed experiments, such as common
garden trials or controlled environment tests,which compare genomic
offset predictions with realized fitness outcomes in populations
exposed to environmental change14,19.

Methods
Sample collection
To optimize the representation of genetic and environmental diver-
sity, we selected 16 representative moso bamboo accessions (RMAs)
based on a previous phylogenetic study that identified the species’
primary natural distribution in China10,39 (Supplementary Fig. 1). Our
sampling strategy aimed to capture the extensive genetic diversity
present in moso bamboo by covering all its major habitats, ensuring a
comprehensive representation of the populations. The 16 RMAs, each
chosen from one of the 16 regions (Supplementary Table 1 and Sup-
plementary Fig. 1), collectively captured a wide range of variability
across the moso bamboo population. Additionally, we used genetic
information from 427 resequenced accessions obtained in our pre-
vious study10 (Supplementary Data 17), which covered all the main
natural distribution regions of moso bamboo in China, to enhance the
genetic representation of our samples in this study. In each region,
moso bamboo shoots were collected for DNA extraction in April 2020.
Concurrently, young leaves, stems, roots, and rhizomeswere collected
from the samemoso bamboo rhizome as the RNA-seq samples in each
region. DNA samples were rapidly dried using silica gel beads, while
RNA samples were placed in an RNA stabilization solution. All samples
were stored and transported on dry ice. Representative specimens
were then deposited at the International Centre for Bamboo and
Rattan.

Genome and transcriptome sequencing
High-molecular-weight genomic DNA (gDNA) extraction was per-
formed with meticulous care and stringent quality control. Purity and
quantity were assessed by a Nanodrop 1000 spectrophotometer and
Qubit assays (Thermo Fisher Scientific, CA, USA). SMRTbell libraries
with inserts of approximately 15 kbweregenerated using the SMRTbell
Express Template Prep Kit 2.0 (Pacific Biosciences, CA, USA) and size-
selected into narrow fractions with the SageELF system (Sage Science,
Beverly, MA, USA) to improve sequencing accuracy. Libraries were
sequenced on 2–3 SMRT Cells 8M on the Sequel II platform (Pacific
Biosciences, CA, USA) using 30 h movie times to maximize the data
yield and quality.

For chromosome-level scaffolding, Hi-C libraries were con-
structed according to the standard protocol and sequenced using a
150 bp paired-end strategy on the DNBSEQ-T7 platform. For RNA-seq,
tissues from three biological replicates per RMA were collected,

Fig. 5 | Prediction risk and required genomic offset for the moso bamboo
population under future climate change. a Comparison of the mean risk of non-
adaptedness (RONA, y-axis) between the SSP126 (red) and SSP585 (blue) emission
scenarios from 2061–2080 across 19 bioclimatic variables (BIO1–BIO19, x-axis) and
four climate models (ACCESS-CM2, CMCC-ESM2, GISS-E2-1-G, and MIROC6). The
error bars represent the mean values plus or minus the standard error. b Mean
RONA estimates for the moso bamboo population under the high-emission sce-
nario (SSP585) and the max temperature of warmest month (BIO5) from 2061 to
2080 based on four individual climate models (ACCESS-CM2, CMCC-ESM2, GISS-
E2-1-G, and MIROC6). The map colors indicate projected climate changes in BIO5,

with darker red indicating more substantial increases in temperature. The circle
size represents the RONA values of different populations. c, dMap of the gradient
forest (GF)-predicted local genomic offset averaged across four climatemodels for
the distribution of moso bamboo under SSP126 (c) and SSP585 (d) from
2061–2080. The color scale from blue to red indicates increasing genomic offset.
e, f RGB map showing local (red), forward (green), and reverse (blue) genomic
offsets for SSP126 (e) and SSP585 (f), respectively. Brighter cells (closer to white)
have relatively greater genomic offset values, and darker cells (closer to black) have
relatively lower values along each axis. The lower panels are the bivariate scatter-
grams of (e, f) with 1:1 lines.
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including leaves, stems, roots, and rhizomes (Supplementary Data 1).
Total RNA was extracted using the cetyltrimethylammonium bromide
(CTAB) protocol, followed by library construction with the NEBNext
Ultra RNA Library Prep Kit and 150 bp paired-end sequencing on the
DNBSEQ-T7 platform. All library preparation and sequencing for this
project were performed by Annoroad Gene Technology Co., Ltd.

Genome assembly
HiFi reads were generated from subreads using the CCS algorithm
v6.2.040 and assembled into contigswithHifiasmv0.16.1-r37541. For CY,
HB, and HZP, Hi-C sequencing reads were used as inputs for Hifiasm to
assist in generating haplotype assemblies. Assembly quality was eval-
uated for structure accuracy by assessing the completeness of the
Embryophyta_odb10 dataset (1614 plant orthologs) with BUSCO
v5.4.342. The LTR assembly index (LAI) was calculated with
LTR_retriever v2.9.043 and a mutation rate of 8.51 × 10−8 38, with an
estimated moso bamboo genome size of 1.92 Gb10. Meryl databases
were generatedwithMeryl v1.4144 for the rawsequencing reads and the
assemblies. The quality value (QV) and k-mer completeness were then
calculated using Merqury v1.344 by comparing the k-mer spectra of the
assembly and the raw reads. Hi-C reads were used to anchor scaffolds
to chromosomes via the 3D-DNA pipeline v17012345. The resulting
contact maps were visualized with Juicerbox v1.5.246.

Genome annotation
Transposable element (TE) annotation combines de novo and
homology-based approaches at the DNA and protein levels. A de novo
repeat library was constructed with RepeatModeler v2.0.347, and
RepeatMasker v4.1.2-p148 was used to classify TEs by mapping to the
library and Repbase v21.1249. For gene prediction, a combination of
homology-based, RNA-seq-based, and ab initio methods was utilized.
Homologous proteins from seven plant species (Ananas comosus,
Arabidopsis thaliana, Glycine max, Hordeum vulgare, Nicotiana
attenuata, Oryza sativa, and Zea mays) were downloaded from Phy-
tozome v1150 and aligned to the genome using GeneWise v2.4.151. The
RNA-seq reads were preprocessed by Trimmomatic v0.3852 and map-
ped to the genomeusingHISAT2 v2.1.053. AUGUSTUS v3.4.054 wasused
to perform ab initio predictions trained on the transcriptome. GETA
v2.5.5 (https://github.com/chenlianfu/geta) was used to integrate evi-
dence from all methods to generate a high-quality gene set for each
accession. BUSCO v5.4.3 was used to assess gene set completeness.
Functional annotation was assigned to the genes using DIAMOND55

according to the best hits to the following databases: NCBI Nr
v2021082456, Swiss-Prot v2021082457, KOG v2003072158, eggNOG
v5.059, InterPro v8560, Pfam-A v34.061, GO (integratedwith eggNOGand
InterPro), and KEGG databases62 (based on KAAS v2.163). All databases
were accessed on 11 December 2021.

Switch error calculation
Switch errors were calculated using calc_switchErr v1.021. Briefly, PacBio
HiFi reads were aligned to haplotype 1 using pbmm2 v1.5.0 (https://
github.com/PacificBiosciences/pbmm2), and SNPs were identified using
DeepVariant v1.4.064. SNP phasing was subsequently performed on
Whatshap v1.165, followed by alignment of the two haplotype genomes
using nucmer in MUMmer4 v4.0.0rc166. SNPs were identified using the
show-snps command, and switch errors were calculated by comparing
the SNPs to those identified in the aligned reads. For accessions with Hi-
C data (CY, HB, and HZP), Hi-C sequencing reads were aligned to hap-
lotype 1 using bwa v0.7.1767, SNPs were called using DeepVariant, and
switch errors were calculated from both the HiFi and Hi-C SNPs.

Allele identification
The determination of alleles between any two haplotype assemblies
wasbasedon a combination of protein sequence similarity and relative
position. Protein sequence similarity was calculated by aligning every

haplotype genome using BLASTP v2.9.0 + 68. The relative positions
between two genes from different genomes were determined by
aligning the assemblies using Minimap2 v2.24-r112269, and gene pairs
within 40 kb (the average gene distance in themoso bamboo genome)
were retained for further analysis. The 40 kb threshold was chosen
because it approximates the average gene distance in the moso bam-
boo genome, which has a size of approximately 2 Gb and contains
approximately 50,000 genes. This threshold allows for some posi-
tional flexibility, permitting alleles to be separated by up to one aver-
age gene interval. Based on the criteria of closer genomic distance and
higher sequence identity, the best reciprocal alignments were pre-
served as allele pairs. Genes that met the similarity threshold for the
other haplotype but were not among the best-aligned allele pairs were
identified as haplotype-specific duplicated genes (Supplementary
Data 18). To promote transparency and reproducibility, the script for
this step has been made publicly available on GitHub (https://github.
com/ZhaoGroupLab/moso-bamboo-pangenome).

Pangenome construction
Apangenomewas constructed by iteratively incorporating genes from
each genome into aggregated gene sets. Any genome could serve as
the initial reference. For each additional genome, its genes were
mapped to allele sets in the existing pangenome based on identified
alleles. Genes without a mapped allele were placed into new sets. This
process was repeated until all the genomes were incorporated. Pan-
genome aggregation curves were generated by permuting the order of
genome addition.

Definitions of gene sets in pangenomes
Pangenome gene sets were categorized based on their frequency
across accessions. The core gene set contained genes present in all 16
accessions. The softcore gene set included genes present in 12–15
accessions. The dispensable gene set contained genes present in 2–11
accessions. Theprivate gene set includedgenespresent in only a single
accession. Additionally, to characterize the presence and absence of
alleles in the haplotypes, we classified all the gene sets into three types
basedon the alleles. If every gene in a gene set had its allele present, we
defined this as a double-allele set. In contrast, if none of the genes in a
set had alleles present, we defined this as a single-allele set. The third
type fell between the double-allele and single-allele sets. If some genes
in a set had alleles present while others did not, we defined this as a
variable-allele set. In addition, single-allele gene sets containing
duplicated genes were reclassified as variable-allele gene sets. There-
fore, considering both accession occurrence and allele presence, we
ultimately divided all the gene sets into 12 categories: core-double,
core-variable, core-single, softcore-double, softcore-variable, softcore-
single, dispensable-double, dispensable-variable, dispensable-single,
private-double, private-variable and private-single.

Allele-specific expression
Allele-specific expression (ASE) analysis was performed on triplicate
RNA-seq data from 3 or 4 tissues (leaves, stems, rhizomes, and roots)
collected from 16 representative moso bamboo accessions. Reads
were preprocessed with Trimmomatic v0.39 and aligned to the cor-
responding haplotype assemblies using HISAT2 v2.1.0. The transcripts
per kilobase million (TPM) values were calculated with StringTie
v1.3.570, and the alleles were compared using DESeq2 v1.34.071. Alleles
with a P-value < 0.05 and an absolute log2(fold change) > 1 were clas-
sified as having ASE.

SNP and InDel identification
We identified SNPs and InDels based on whole-genome alignment and
read alignment strategies. For whole-genome alignment strategies,
haplotype assemblies were aligned to the CY haplotype 1 reference
using nucmer in MUMmer v4.0.0rc1. SNPs were identified using the
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show-snps command, and InDels were identified using svim-asm
v1.0.272. For the read alignment strategies, PacBio HiFi reads were
aligned to haplotype 1 using pbmm2 v1.5.0 (https://github.com/
PacificBiosciences/pbmm2), and SNPs and InDels were identified
using DeepVariant v1.4.063. Subsequently, the SNPs and InDels
detected by both strategies were retained. Variations were converted
to reference genome coordinates based on query-reference compar-
isons. The BCFtools v1.973 merged command was used to integrate
SNPs and InDels across accessions.

Structural variation identification
Genome-wide structural variations (SVs) were identified using five
pipelines based on read alignment or whole-genome alignment to the
CY haplotype 1 reference: (i) Minimap2 v2.24-r1122 + cuteSV v1.0.1374;
(ii) Ngmlr v0.2.775 + sniffles v1.0.1275; (iii) pbmm2 v1.5.0 + pbsv v2.8.0
(https://github.com/PacificBiosciences/pbsv); (iv) Minimap2 + svim-
asm v1.0.2; and (v) Nucmer v4.0.0rc166 + Assemblytics v1.2.176.

Filtering and merging of SVs
SVs were filtered and merged within and across accessions based on
the above five pipelines. Initially, a given SV required support from at
least two callers to be retained. SVs >50kb were specifically detected
by at least one genome-wide alignment method. After filtering, SVs
were merged as follows: deletions (DELs) and inversions (INVs) within
1% of the length of the larger SV (with a minimum of 5 bp and a max-
imum of 100bp) were merged. Insertions (INSs) within 10 bp of each
other with > 90% BLAST alignment identity and coverage were
merged.

Identification of the frequency of variations in genomic regions
The frequencies of SVs and short variations (SNPs and InDels) were
identified by dividing the genome into 100-kb genomicwindows using
the makewindows utility in BEDtools v2-2.25.077. The coverage com-
mandwas used to calculate the number of mutations per window. The
windows were sorted by mutation count in descending order.

Graph-based pangenome construction
A graph-based pangenome was constructed with vg v1.3878 through
the following steps. The vg construct command was used to construct
the initial graph. The gbwt command was used to generate the.gbwt
file. The snarls commandwas used to produce the.snarls file. The index
command built distance index files and minimized the index. Addi-
tionally, short reads from 427 resequenced accessions were aligned to
the graph-based pangenome using vg giraffe79.

SNP and InDel calling based on resequenced reads
The raw sequencing reads were processed using the same pipeline as
in our previous study to ensure consistency. Briefly, the filtered rese-
quenced reads were aligned to the CY haplotype 1 reference genome
using BWA v0.7.17. Aligned reads (BAM files) were sorted using SAM-
tools v1.980, and duplicates were removed using GATK v4.2.081. SNP
and InDel calling was performed using the joint calling method within
GATK. We obtained the genomic variant call format (GVCF) in ERC
mode for each accession based on reads. Then, we filtered SNPs
directly based on quality, removing variations with a quality score
lower than 50 based on the quality score distribution.

To determine a pruned SNP set, we used PLINK v1.982. The
resulting SNPs were then used to assess population structure using
ADMIXTURE v1.3.083 for multiple repeats with different random seeds.
The population structure analysis showed K = 1 (Supplementary
Fig. 15), which was consistent with our previous findings10.

Identification of climate-associated variations
The SVs identified fromthe graph-basedpangenomewere constructed
using 16 representative moso bamboo accessions, and the SNPs and

InDels detected from the previously generated 427 resequencedmoso
bamboo accessions were used for the identification of climate-
associated variations. We retained variations with a minor allele fre-
quency greater than 0.05, a maximummissing data proportion of 0.2,
and a minimum depth of 3 across all variation types, including SNPs,
InDels, and SVs, using VCFtools v0.1.1384. Since most variations
occurred between haplotypes rather than within accessions in the
moso bamboo population, we filtered sites with minor genotype fre-
quencies < 0.05, leaving 1,467,461 SNPs, 103,955 InDels and 4,643 SVs
for genome-wide identification of climate-associated variations. We
tested for correlations with 19 bioclimatic variables (BIOs) using latent
factor mixed models 2 (LFMM2) implemented in the R package LEA
v3.6.085. Based on the ADMIXTURE v1.3.0 results and the results of a
previous study10, we set K = 1 for LFMM2 analyses and used false dis-
covery rate (FDR) correction for multiple testing to obtain adjusted P-
values. We retained genetic variations with an adjusted P-value < 0.05
as climate-associated variations. Additionally, we performed gradient
forest (GF) analysis in the R package gradientForest v0.1.3486 to rank
the importance of the 19 BIOs and examined the correlations among
them. Six BIOs with correlation coefficients |r | <0.6 (BIO1 (represent-
ing BIO1, BIO6, BIO9 and BIO11), BIO2 (representing BIO2), BIO5
(representing BIO5 and BIO10), BIO8 (representing BIO8), BIO14
(representing BIO12, BIO13, BIO14, BIO16, BIO17, BIO18 and BIO19) and
BIO15 (representing BIO15)) were selected for redundancy analysis
(RDA) using the R package vegan v2.6.487. Significant variations were
defined as loadings exceeding 3.5 standard deviations from the mean
along one or more RDA axes. The climate-associated adaptive varia-
tions were identified by retaining the variations detected by both
methods, LFMM2 and RDA, for each climatic variable. In addition, we
used RDA and partial RDA (pRDA) to quantify the relative contribu-
tions of geography and the environment. The longitude and latitude
values characterized the explanatory variables of geography, and the 6
BIOs used in the above RDA characterized the explanatory variables of
climate.

Calculation of RONA and genomic offset
Future climate projections were obtained using four general circula-
tion models (GCMs) from the World Climate Research Programme
Coupled Model Intercomparison Project Phase 6 (WCRP CMIP6): the
Australian Community Climate and Earth System Simulator Coupled
Model version 2 (ACCESS-CM2), second-generation CMCC Earth Sys-
tem Model version 2 (CMCC-ESM2), the Goddard Institute for Space
StudiesModel E version 2.1 coupledwith the GISSOcean (GISS-E2-1-G),
and the Model for Interdisciplinary Research on Climate version 6
(MIROC6). Two shared socioeconomic pathways (SSPs) were con-
sidered—a low-emission scenario (SSP126) and a high-emission sce-
nario (SSP585)—for two 20-year periods (2061–2080 for SSP126 and
2081–2100 for SSP585). The SSPs represent combinations of shared
socioeconomic pathways and representative concentration pathways
(RCPs). SSP126 is an abbreviation for the SSP1-RCP2.6 scenario. SSP1
(sustainability, taking the green road) assumes a gradual shift toward
a more sustainable world, with emphasis on human well-being and
reduced inequality. RCP2.6 represents one mitigation scenario
leading to a very low forcing level88,89. Similarly, SSP585 is the
shortest form for the SSP5-RCP8.5 scenario. SSP5 (fossil fuel devel-
opment, taking the highway) assumes rapid economic growth driven
by fossil fuels, with high energy demand and limited efforts to miti-
gate greenhouse gas emissions. RCP8.5 represents a very high-
baseline emission scenario88,89.

The relative risk of non-adaptedness (RONA) was calculated for
all the sampling regions under the SSP126 and SSP585 scenarios
using pyRona v0.3690. Gradient forest (GF) analysis was then per-
formed in R to predict genomic offset under the different future
scenarios using 19 BIOs. We Subsequently calculated the local, for-
ward, and reverse offsets according to the methodology13, the script
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for this step has been made publicly available on GitHub (https://
github.com/ZhaoGroupLab/moso-bamboo-pangenome). Local off-
set, a measure of the vulnerability of a resident population to climate
change, was calculated by estimating the predicted change in allele
frequencies at climate-adaptive loci that was necessary for the
population to adapt to local climate changes over time. In contrast,
forward offset assumed that populations had unlimited migration
ability. It was calculated by identifying theminimum predicted offset
if propagules or alleles could move, through gene flow, to any sui-
table habitat within the range. Reverse offset represented the pos-
sibility that any population in the current range would be preadapted
to a particular location in the future. Reverse offset was calculated by
identifying the minimum offset between hypothetical populations
within the current range in the future climate and populations in the
current climate. For the forward and reverse offsets, we set the
migration distance to infinity because moso bamboo propagates
vegetatively for a long period and is primarily introduced through
transplanting.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For the 427 resequenced accessions from our previous study, the
sequencing data have been deposited in the National Center for Bio-
technology Information (NCBI) Sequence Read Archive (SRA) under
accession number PRJNA755164 and the China National GenBank
(CNGB) under accession number CNP0001535. For the 16 repre-
sentative moso bamboo accessions and 186 RNA-seq samples gener-
ated in this study, the sequencing data have been deposited in the
Genome Sequence Archive (GSA) under accession numbers
CRA014344. The reference genomeused in this study is available in the
GSA database under BioProject code PRJCA022610. The source data
underlying Figs. 1a–d, 2a–f, 3a–e, 3g, 4b–c, 4e–f, 5a–f, and the Sup-
plementary Figs. are provided as source data files. Source data are
provided with this paper.

Code availability
All software used in our study are publicly available, and the specific
parameters are provided in Supplementary Table 13. The customized
codes used in this study have been deposited in GitHub [https://
github.com/ZhaoGroupLab/moso-bamboo-pangenome] and Zenodo
[https://doi.org/10.5281/zenodo.12794412]91.
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